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Extracting key concepts from clinical texts for indexing is 
an important task in implementing a medical digital 
library.  Several methods are proposed for mapping free 
text into standard terms defined by the Unified Medical 
Language System (UMLS). For example, natural language 
processing techniques are used to map identified noun 
phrases into concepts. They are, however, not appropriate 
for real time applications.  Therefore, in this paper, we 
present a new algorithm for generating all valid UMLS 
concepts by permuting the set of words in the input text 
and then filtering out the irrelevant concepts via syntactic 
and semantic filtering. We have implemented the algorithm 
as a web-based service that provides a search interface for 
researchers and computer programs. Our preliminary 
experiment shows that the algorithm is effective at 
discovering relevant UMLS concepts while achieving a 
throughput of 43K bytes of text per second. The tool can 
extract key concepts from clinical texts for indexing. 

INTRODUCTION 
The Unified Medical Language System (UMLS) is a 
collection of over 100 medical knowledge sources [1]. The 
most recent edition of UMLS (2003AA ed.) contains 
875,255 concepts and 2.14 million phrases [5] with lengths 
ranging from 1 to 100 words, and an average of 4.5 words.  
Our goal is to develop a method to extract relevant UMLS 
concepts in real time from clinical texts for indexing.   

A significant amount of research has aimed at developing 
effective methods for mapping free text into UMLS 
concepts.  Examples of such efforts include SENSE [1], 
MicroMeSH [6], Metaphrase [7], KnowledgeMap [4], 
PhraseX [2], MetaMap [3].  Many of these efforts use 
natural language processing (NLP) techniques to parse 
passages of free text to generate noun phrases, which in 
turn are mapped into UMLS phrases. This approach 
achieves some success. They are, however, some 
shortcomings to this general technique: 

First, some important concepts can not be discovered 
through the identification of noun phrases. Table 1 
provides examples of texts that reveal the shortcomings of 
the use of noun phrases.   

•  Example 1: A word from the heading phrase with 
a word from the description phrase forms the key 
concept, prostate hyperplasia (C0033577). 

•  Example 2:  A word from the subject and two 
words from the location phrase combine to form 
the key concept, left lung mass (C0746117). 

•  Example 3:  Words from two sentences combine, 
forming the key concept, left lung mass 
(C0746117). 

 
 
 
 
 
 
 

Secondly, NLP requires significant computing resources 
and usually works in an offline mode.  Therefore, NLP 
methods are not generally suitable for a real time web tool 
that requires mapping a large volume of free text into 
UMLS concepts.   

In this paper, we propose a novel approach to discover 
candidate phrases in a sentence or other text unit and then 
use syntactic and semantic filters specified by the user to 
filter out irrelevant conceptual terms. The approach avoids 
using the expensive NLP process. An empirical analysis 
shows that our algorithm can process text at a throughput 
of 43K bytes text per second, which is much faster than 
NLP-based approaches like MetaMap.  Our system can 
extract conceptual terms from clinical texts and group 
them by their corresponding semantic types, which can be 
used for indexing in medical digital libraries.  

BACKGROUND 

Mapping of UMLS Concepts We first postulate UMLS 
concepts in the form shown in 
table 2, which can be calculated 
from UMLS normalized string 
table MRXNS.ENG. Here, each 
row contains a phrase that is 
given as a set of words where 
the ordering is overlooked.  For 
any text of m distinct words, 
e.g. T={A,B,C,D}, the mapping 
problem is to find all the 
phrases in the table that are 
subsets of the text T.  

pno Set of 
words 

#word concept

1 A 1 C1 
2 B 1 C2 
3 A, B 2 C3 
4 C 1 C4 
5 B, C, D 3 C5 
6 A, D, E 3 C6 
7 E, D 2 C7 
8 A, C 2 C8 
Table 2. Phrase table 

1 Prostate, right (biopsy) 
  - fibromuscular and glandular hyperplasia 

2 A small mass was found in the left hilum of the lung. 

3 A large mass was identified. It is in the left side of the lung. 

Table 1. Example texts to illustrate problems of mapping 
individual noun phrase to concepts. 



For the text example T, for example, the satisfied phrases 
are {A}, {B}, {A,B}, {C}, {B,C,D}, and {A,C}.  The two 
phrases {A,D,E} and {E,D} are not considered relevant 
since E is not in T.   
Computation Complexity Since UMLS has 2.14 million 
phrases, Table 2 will contain 2.14 million rows.  For a text 
that contains m distinct words, the mapping problem may 
be solved in two naïve ways: 
First approach: For each of the 2m-1 non empty subsets of 
the text, s, we determine whether s is a phrase in the phrase 
table.  Let the average time for the testing of whether s is 
contained in the table be a, then this approach has an 
average time complexity of O(a2m). When m>20, this 
approach requires millions of comparisons. 
Second approach: For each phrase of the N rows (2.14M) 
in the table, we determine whether the phrase is a subset of 
the text.  Supposing the average time for testing whether a 
phrase in the table is contained in the text equals constant 
b, then the average time complexity will be O(bN) which is 
also very high time complexity.   
Therefore both naïve approaches are not appropriate for 
designing a real time web application. In the following 
sections, we propose an efficient mapping algorithm that is 
significantly faster than the above approaches.  

METHODS 
In this section, we first present text preprocessing. We then 
demonstrate the basic idea of generating concept 
candidates by permuting the set of words in the input text. 
Finally, we present several syntactic and semantic filters to 
remove the irrelevant conceptual terms introduced during 
the generation of phrase candidates. 

Text Preprocessing 

Our index uses the UMLS normalized string table which 
only supports certain types of abbreviations. Therefore we 
need to preprocess the input text to normalize words [3], 
detect undefined and ambiguous abbreviations as well as 
remove stop words to increase the accuracy of the 
extraction.   

We use two data structures 
to store special word 
inflections as shown in 
Figure 1. Hash table 
specialHt maps a special 
word to a base.  For 
example, children maps to 
child by bid=0; arose and 
arisen map to arise.  

When a word has no entry in 
wordHt in line 3 of Figure 3, normalization starts.  It 
follows these two steps: 1) If removing regular inflection, 
the word has an entry in wordHt, then returns the entry; 

otherwise, it continues to step 2. 2) If the word has an 
entry in specialHt, then return the corresponding base 
word; otherwise, the word is overlooked. 

The Mapping Algorithm 

Data structures The Phrase table in Table 2 can be sorted 
according to the increasing number of words, as in Figure 
2(a). We can then use it to populate the four indexing data 
structures as shown in Figure 2(b-e).      

•  wordHt: a hash table mapping a word to a unique 
identifier wid, as in Figure 2(b). In the UMLS 
2003AA, there are 431,200 distinct words.  
Suppose that the average characters per word are 
10, and wid is a 4 byte integer. The total size for 
the wordHt is about 6Mega bytes.  

•  wid2pids: an array mapping wid to a list of phrase 
identifiers pids.  It is an inverted index indicating 
the phrase list where a word occurs, as in Figure 
2(c).  The average number of phrases per word in 
the table is 21.3.  Therefore the data size for this 
table is 431200*21.3*4=36.7M.  

 
 
 
 
 
 
 
 
 
 
 
 

•  cuis: an array that maps pid to UMLS cui, as 
shown in Figure 2(d).  Since the total number of 
phrases in UMLS is 2.14M, this array size is 
2.14M* 4= 8.6M bytes.  

•  pLen: an array indicating the upper bound for a 
given phrase length, as in Figure 2(e).  For 
example, the pid for phrases of length 1 will be 
less than 3. Using this table, we are able to 
determine the length for each pid.   This 
information is used in the mapping algorithm to 
determine if the input words contain the complete 
phrase. Since the maximal phrase length is 100, 
the memory size for this array is about 400 bytes.  

Since the total memory for the above four data sets is less 
than 50M bytes, they can reside in the main memory.  
Phrase searching reduces to a counting process Given 
the above indexing data structures, mapping a text T into 
concepts becomes a simple counting process, as shown in 
Figure 3.  It first adds each word into its occurring phrase’s 
queues, then we output those phrases that reach the expect 
number of words.  More specifically, at Line 1, the text T 
is tokenized into a list of words, which are transformed 
into lowercase. Repeating words are dropped, as in Line 2. 

pid words # cui
0 A 1 C1
1 B 1 C2
2 C 1 C4
3 A, B 2 C3
4 A, C 2 C8
5 E, D 2 C7
6 B, C, D 3 C5
7 A, D, E 3 C6

a. Phrase table 

pid cui
0 C1
1 C2
2 C4
3 C3
4 C8
5 C7
6 C5
7 C6

d. cuis 

word����wid
A� 0 
B� 1 
C� 2 
D� 3 
E� 4 

b. wordHt 

wid pids 
0 0, 3, 4, 7 
1 1, 3, 6 
2 2, 4, 6 
3 5, 6, 7 
4 5, 7 

c.wid2pids 

len upPid
0 0 
1 3 
2 6 
3 8 

e. pLen 

Figure 2. Indexing structures for matching text to 
UMLS concepts 

bid base 
0 child 
1 woman
2 man 
3 bring 
4 arise 

… 
(b) base 

word ����bid 
children  � 0 
women  � 1 
men � 2 
brought � 3 
arose � 4 
arisen � 4 
… 

(a) specialHt 
Figure 1. Data structure for 

removing inflection. 



The unique words in wl are mapped into wids through the 
hash table wordHt, as in Line 3.  At Lines 4 and 5, we use 
hash table countHt to collect information for phrases and 
their word lists.  If the number of words for a phrase is less 
than the expected length, some word of the phrase is 
absent, and the phrase will be removed, as in Line 6.  
Finally at Line 7, phrase identities are mapped into 
concepts, and output the results. 

 

 

 

 

 

 

 

For example, Figure 4 shows the counting process for the 
input text T={A,B,C,D}.  In Figure 4(b), a word is mapped 
into wid and pids.  For instance, word A has wid=0 and 
pids={0,3,4,7} meaning that A occurs in four phrases.  We 
then add A to the four pid word lists in hash table countHt, 
as in Figure 4(a).  Figure 4(a) shows the results after 
processing all the words in T.  Then pid 5 and 7 are 
removed since their lengths are 1 and 2 less than the 
expected lengths 2 and 3, respectively. 

For an input text of m distinct words, since the average 
length of the phrase list of a word is 21.3, we need to 
perform 21.3*m operations at Line 4-5 in Figure 3.  
Therefore the average time complexity will be O(21.3m) 
which is  significantly lower than the complexity of the 
naive approaches. 

Adding Synonyms 

Synonym mapping is useful 
since people do not usually 
know the exact terminologies 
if they are not in the field. For 
example, a patient query may 
consist of no medical terms 
unless synonyms are 
considered.  We put words 
into a synonym group if they 
are synonym in UMLS [8] or share a common concept. 
Two data structures synHt and gid2wids are used for 
adding synonyms, as shown in Figure 5.  The table synHt 
maps a word to a synonym group.  For example, the words 
eye, optic, and oclar are synonyms since they have the 
same group identifier 0.  The gid2wids is an array that 
maps a synonym group to its member words.  Given synHt 
and gid2wids, it is easy to find the list of synonyms for a 
given word. 

Filtering 
Since applications usually have a certain focus, filtering 
out the results that people are not interested in is very 
useful.  For example, a doctor wants to know what kind of 
diseases a patient suffers. Rather than returning all 
concepts to the doctor, several disease-related UMLS 
phrases are much more desirable.  We consider six types of 
filters as shown in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 
The first three filters are applied during the mapping 
process.  They are: 

•  Symbol Type filter:  to specify the symbol types of 
interests.  For example, if a user wants to ignore 
digits like MetaMap did, he can simply not check 
the Digits box as in Figure 6.  

•  Term Length filter:  to specify the length 
limitation of candidate phrases. 

•  Coverage filter: to specify the coverage condition 
for a candidate phrase.  It has three options, at 
least one, majority, and all. By default, it is all 
where every word in a candidate phrase should be 
present in the input text.   

The latter three filters are used for further pruning the 
candidate phrases.   

•  Subset filter: to remove phrases if they are subsets 
of some other phrases.  For example, if results are 
{lung cancer} and {cancer}, then {cancer} will 
be removed since it is a subset of the former.   

•  Range filter: to remove a phrase if the phrase is 
found from words in the input text to exceed a 
specific distance.      

•  Semantic filter: to remove the phrases of semantic 
types that the user is not interested in. In UMLS, 
134 semantic types are defined and each concept 
maps to one or several semantic types. For 
example, the user can select Disease or Syndrome 
and its two sub types, as shown in Figure 6, so 

word:  wid: pids 
A:  0:  0, 3, 4, 7 
 B:  1:  1, 3, 6 
 C:  2:  2, 4, 6 
 D:  3:  5, 6, 7 
(b) pids 

pid����words 
0 ���� {A} 
1 ���� {B} 
2 ���� {C} 
3 ���� {A, B} 
4 ���� {A, C} 
5 � {D} 
6 ���� {B, C, D} 
7 � {A, D} 

(a) countHt 
Figure 4. Counting the number of 

words for each pid. 

Hashing and 
counting 

//input:  text T 
//output: list of cui & phrase 
1. list of words of T � wl 
2. to low case & remove 

repeating words in wl.  
3. words in wl �wids 
4. foreach wids, get pids 
5.    foreach pids, add countHt 
6. remove if |words|<exp(pid) 
7. replace pid to cui, output 

Figure 3.  The mapping 
Algorithm. 

gid wids 
0 21,34,67

… 
(b) gid2wids 

word: wid����gid 
eye:  21 � 0 
optic:34 � 0 
oclar: 67 � 0 
… 

(a) synHt 
Figure 5. Data structure for 

adding synonyms. 

Figure 6.  Configuration options. 



that the resulting phrases will be of these three 
types.  As a result, the filter also eliminates those 
irrelevant phrases from the set of phrase 
candidates.  Note that UMLS ISA relationship 
may also be used to filter out more general 
phrases. 

RESULTS 
We have implemented the algorithm as a web-based 
service named IndexFinder that provides web interfaces 
for users and programs at the following links respectively: 

•  http://fargo.cs.ucla.edu/umls/search.aspx 
•  http://fargo.cs.ucla.edu/umls/service.asmx 

The IndexFinder, written in C#, is running on a 1.2GHz 
PC machine with 512MB main memory. We tested the 
web service using 5,783 reports of 128 patients from the 
UCLA Hospital. The total size of the documents is 10,8M 
bytes.  The service processes a document a time without 
filtering.  There are 910K concepts found in 254 seconds.  
Therefore, the throughput is about 42.7 K bytes per 
second. Figure 7 shows the web interface for users.  There 
are two windows on the web page, one for input text and 
the other for output results.  Three buttons for adding 
synonyms, removing inflection, and configuring options 
are at the top of the input window.  When a user clicks the 
IFinder Search button below the input window, results will 
show up.  Figure 7 shows 18 phrases found when no filters 
were applied.  Each line has a UMLS concept identifier, 
phrase text, and corresponding semantic type.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Filtering Figure 8 shows filtering result for the sample 
input in Figure 7, also shown in the top of Figure 8. When 
a subset filter is used, 8 phrases are returned.  If Pathologic 
Function is selected, four answers will be returned.  The 
two phrases prostate and focal will be given if the user 
wants to know body parts or spatial characteristics.  There 
is only one diagnostic procedure used, which is prostate 
biopsy.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Comparison with NLP approach We have performed 
comparison study between IndexFinder and NLP method 
MetaMap. We noticed that the NLP tend to break a 
sentence into small fragments. Conversely, IndexFinder 
considers all the possible combination of words in the 
input unit as long as valid in UMLS. As a result, NLP does 
not yield concepts as specific as IndexFinder as shown in 
Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

We are currently in the process of evaluating the accuracy 
of our method. We plan to generate a test dataset by 
randomly selecting a set of topic sentences from the above 
5,783 patient reports and then compare the accuracy of the 
indexing terms generated by the IndexFinder in terms of 
the numbers of false negatives and false positives [10].      

APPLICATION 
As a specific clinical application for this research, we have 
focused on using the IndexFinder to intelligently filter all 

Output window

Input window

Figure 7.  IndexFinder web interface. 

Figure 8.  Result filtering. 

Input:   Prostate, right (biopsy) 
   - fibromuscular and glandular hyperplasia 
   - focal acute inflammation 
 - no evidence of malignancy  
Filtering Results 
 Subset C0194804:biopsy prostate 
 C0033577:prostate hyperplasia 
 C0035621:right 
 C0259776:hyperplasia fibromuscular 
 C0334000:hyperplasia glandular 
 C0522570:inflammation focal 
 C0333361:inflammation acute 
 C0391857:no malignancy evidence 
 Pathologic Function  C0033577:prostate hyperplasia 
   (T046) C0259776:hyperplasia fibromuscular 
 C0334000:hyperplasia glandular 
 C0333361:inflammation acute 
 Body parts & Spatial  C0033572:prostate  
 (T023, T082) C0205234:focal 
 Diagnostic Procedure (T60) C0194804:biopsy prostate 

Input: A small mass was found in the left hilum of the lung. 
IndexFinder Results: 
 C0024873:a mass >>T190:Anatomical Abnormality 
 C0700321:small >>T080:Qualitative Concept 
 C0746117:mass lung left  >>T033:Finding 
 C0332285:found >>T082:Spatial Concept 
 C0225733:lung left hilum >>T029:Body Location or Region 
MetaMap Results: 
 Phrase: "A small mass" 
     861 Mass, NOS [Anatomical Abnormality] 
     694 Small [Qualitative Concept] 
 Phrase: "was" Meta Mappings: <none> 
 Phrase: "found" Meta Mappings: <none> 
 Phrase: "in the left hilum" 
    1000 Left hilum [Body Part, Organ, or Organ Component] 
 Phrase: "of the lung" 
    1000 Lung [Body Part, Organ, or Organ Component] 
    1000 Lung <3> (Lung diseases) [Disease or Syndrome] 

Figure 9.  Comparing results generated by IndexFinder 
and MetaMap. 



clinical free-text in an electronic medical record for 
documents that specifically mention brain tumor related 
content.  It is not uncommon for a brain tumor patient to 
have as many as 50 clinical documents in their medical 
record. Many of these documents will have nothing to do 
with the treatment of the brain tumor, but are concerned 
with other health problems. These documents consist of 
primary care clinical notes, specialist clinical notes, 
pathology reports, laboratory results, radiology reports, 
and surgical notes.  Figure 10 shows an excerpt from a 
radiology report. 

Since our interests focus on brain tumor related concepts, 
we can specify a semantic filter worklist of pertinent 
documents based on brain tumor characteristics including: 
cancer type, anatomical location, and medical 
interventions.   These characteristics are then mapped to 
relevant UMLS semantic types  as shown in Table 3 to 
define semantic filters. 

Brain Tumor 
Characteristics 

Relevant  
     UMLS semantic types 

Specific Cancer Neoplastic Proccess 
Medical Intervention Therapeutic Procedure 
Anatomical location Body Part, Organ or Organ Component 

Table 3. Using UMLS semantic type to define interests. 

A clinician looking for specific documents that address a 
certain type of brain tumor (i.e. meningioma) would have 
to carefully search the individual documents.  With 
IndexFinder, only two key terms, meningioma and 
encephalomalacia, are returned for the above text excerpt 
as shown in Table 4.  The two concepts, in fact, are 
important in the excerpt and thus are good terms for 
indexing. 

Table 4. Output from IndexFinder for the text in Figure 9. 

CONCLUSION 
In this paper, we proposed a new efficient approach for 
extracting the conceptual phrase candidates in clinical texts 
and identifying important phrases for indexing.  The 
method uses a set of data structures to reduce the problem 
of searching UMLS concepts to a simple counting process.  
Input texts are preprocessed to perform word 
normalization, detect abbreviations, and delete stop words 

to improve accuracy of the mapping results. Syntactic and 
semantic filters are used to eliminate the irrelevant 
candidates. Our experiment shows that it can process free 
text at a speed of about 43K bytes per second.  As a result, 
IndexFinder is able to extract key UMLS concepts from 
clinical texts in real time. Preliminary manual evaluation 
shows that the syntactic and semantic filters are effective 
in filtering out irrelevant terms. Further, IndexFinder tends 
to generate more specific concept terms than those of NLP 
approaches.  Thus, IndexFinder has high potential to be 
used for indexing clinical texts for a medical digital 
library.  
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Semantic Descriptor ULMS code 
T191:Neoplastic Process C0025286:meningioma            
T047:Disease or Syndrome C0014068:encephalomalacia      

“The right frontal convexity meningioma is slightly 
larger now than on the prior examination. The left 
frontal meningioma is unchanged. There are three 
other small enhancing nodules seen along the frontal 
convexities bilaterally, as described above. There are 
no new lesions seen. There is no mass effect caused by 
these lesions. There is bifrontal encephalomalacia.” 

Figure 10. Free-text excerpt from a radiology report. 
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